Model 빌드/배포 및 테스트


MLOps

DecisionTreeClassifier를 활용한 Model 빌드의 첫 걸음. 이 단계는 이 동안 설치한 Jupyter notebook, MLflow, MiniO, Seldon 을 활용해 모델을 빌드/배포 하고 테스트 하는 시나리오를 작성한다.

Jupyterlab 에서 모델 빌드

Model mlflow

!pip install numpy
!pip install DecisionTreeClassifier
!pip install mlflow
!pip install boto3
import numpy as np
from sklearn.tree import DecisionTreeClassifier
import mlflow
import os

X = np.array([
  [1, 1],
  [1, 2],
  [1, 3],
  [1, 4],
  [2, 1],
  [2, 2],
  [2, 3],
  [2, 4],
  [3, 1],
  [3, 2],
  [3, 3],
  [3, 4],
  [4, 1],
  [4, 2],
  [4, 3],
  [4, 4],
  [10,1],
  [10,15]
])
y = np.array([0, 0, 1, 1, 0, 0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3])

os.environ['MLFLOW_TRACKING_USERNAME'] = "admin"
os.environ['MLFLOW_TRACKING_PASSWORD'] = "admin"
os.environ['MLFLOW_S3_ENDPOINT_URL']='http://minio.minio.svc.cluster.local:9000'
os.environ['AWS_ACCESS_KEY_ID']='mlflow'
os.environ['AWS_SECRET_ACCESS_KEY']='miniomlflow'

HOST = "https://mlflow.bys.asia/"
EXPERIMENT_NAME = "mlflow-test-experiment"

# Connect to local MLflow tracking server
mlflow.set_tracking_uri(HOST)

# Set the experiment name through which you will label all your exerpiments runs
mlflow.set_experiment(EXPERIMENT_NAME)

# enable autologging for scikit
mlflow.sklearn.autolog()

model = DecisionTreeClassifier(max_depth=3, criterion='gini',min_samples_leaf = 1 ,min_samples_split = 2)

with mlflow.start_run() as run:
    model.fit(X, y)

여기까지는 Jupyter notebook 에서 진행.


MLflow(MiniO) 에 저장된 Artifact 다운로드

Jupyter notebook 에서 모델 빌드를 하고 나서 저장된 Artifact 중 model.pkl, requirements.txt 파일을 다운로드 받는다.

1. Dockerfile

FROM python:3.11-bullseye

WORKDIR /microservice
RUN pip install --upgrade pip

COPY base_requirements.txt /microservice/
RUN pip install -r base_requirements.txt

COPY requirements.txt /microservice/
RUN pip install -r requirements.txt

COPY Predictor.py   model.pkl /microservice/

CMD seldon-core-microservice $MODEL_NAME --service-type $SERVICE_TYPE --grpc-port ${GRPC_PORT} --metrics-port ${METRICS_PORT} --http-port ${HTTP_PORT}

2. Predictor.py

import joblib


class Predictor(object):

    def __init__(self):
        self.model = joblib.load('model.pkl')

    def predict(self, data_array, column_names):
        return self.model.predict_proba(data_array)

3. base_requirements.txt

seldon-core
joblib

4. model.pkl && requirements.txt

위 파일을 모두 한 폴더에 정리한 후 Dockerfile을 빌드한다.


Seldon

아래 SeldonDeployment 파일에서 이미지를 배포한 이미지로 수정하여 배포하면 이전 단계에서 학습시킨 model.pkl 을 파일을 배포할 수 있다.

seldondeployment.yaml

apiVersion: machinelearning.seldon.io/v1
kind: SeldonDeployment
metadata:
  labels:
    app: seldon
  name: model-v3
spec:
  annotations:
    project_name: test
    deployment_version: "v3"
  #     seldon.io/engine-separate-pod: "true"
  name: test-specs
  predictors:
      - componentSpecs:
        - spec:
            containers:
              - image: 202949997891.dkr.ecr.ap-northeast-2.amazonaws.com/common/build:mlv3
                imagePullPolicy: Always
                name: predictor
                env:
                  - name: MODEL_NAME
                    value: "Predictor"    
                  - name: SERVICE_TYPE
                    value: MODEL
                  - name: GRPC_PORT
                    value: "5007"
                  - name: METRICS_PORT
                    value: "6007"
                  - name: HTTP_PORT
                    value: "9000"
          hpaSpec:
            maxReplicas: 2
            metrics:
              - resource:
                  name: cpu
                  targetAverageUtilization: 80
                type: Resource
            minReplicas: 1
        graph:
          children:
          name: predictor
          type: MODEL
          endpoint:
            type: REST
            service_host: localhost
            service_port: 9000
          # logger:
          #   url: http://logger/
          #   mode: all
        name: predictor
        annotations:
          predictor_version: "v3"
          team: opendatahub
          seldon.io/svc-name: model-test
        labels:
          team: opendatahub
          version: v1
        replicas: 1

아래의 Ingress를 통해 seldon-operator를 통해 배포되는 서비스를 노출할 수 있다.
ingress.yaml

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  annotations:
    project_name: model-test
    deployment_version: v1
    alb.ingress.kubernetes.io/group.name: mlops
    alb.ingress.kubernetes.io/subnets: bys-dev-ue1-sbn-1a-extelb, bys-dev-ue1-sbn-1b-extelb, bys-dev-ue1-sbn-1c-extelb, bys-dev-ue1-sbn-1d-extelb, bys-dev-ue1-sbn-1f-extelb
    alb.ingress.kubernetes.io/scheme : internet-facing
    alb.ingress.kubernetes.io/listen-ports: '[{"HTTPS": 443}]'
    alb.ingress.kubernetes.io/certificate-arn: arn:aws:acm:us-east-1:558846430793:certificate/a5207b24-ae67-49ac-b34e-f34ed0088bca
    alb.ingress.kubernetes.io/security-groups: sg-07e6c272df0bed7ee
    alb.ingress.kubernetes.io/healthcheck-path: /api/v1.0/predictions
    alb.ingress.kubernetes.io/healthcheck-interval-seconds: '10'
    alb.ingress.kubernetes.io/healthcheck-timeout-seconds: '5'
    alb.ingress.kubernetes.io/healthy-threshold-count: '2'
    alb.ingress.kubernetes.io/unhealthy-threshold-count: '2'
    alb.ingress.kubernetes.io/healthcheck-port: traffic-port
    alb.ingress.kubernetes.io/success-codes: 200-405
    alb.ingress.kubernetes.io/target-type: ip
    alb.ingress.kubernetes.io/tags: auto-delete=no
  labels:
    app: seldon
  name: model-test
spec:
  ingressClassName: "alb"
  rules:
    - host: model-test.bys.asia
      http:
        paths:
          - path: /
            pathType: Prefix
            backend:
              service:
                name: model-test
                port:
                  number: 8000



Test

X = np.array([
  [1, 1],
  [1, 2],
  [1, 3],
  [1, 4],
  [2, 1],
  [2, 2],
  [2, 3],
  [2, 4],
  [3, 1],
  [3, 2],
  [3, 3],
  [3, 4],
  [4, 1],
  [4, 2],
  [4, 3],
  [4, 4],
])
y = np.array([0, 0, 1, 1, 0, 0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2])

curl -X POST 'https://model-test.bys.asia/api/v1.0/predictions' --header 'Content-Type: application/json' --data-raw '{ "data": { "ndarray": [[6,0]] }}'
{"data":{"names":["t:0","t:1","t:2"],"ndarray":[[0.0,0.0,1.0]]},"meta":{"requestPath":{"model-test-predictor":"202949997891.dkr.ecr.ap-northeast-2.amazonaws.com/common/build:mlv2"}}}

curl -X POST 'https://model-test.bys.asia/api/v1.0/predictions' --header 'Content-Type: application/json' --data-raw '{ "data": { "ndarray": [[2, 4]] }}'
{"data":{"names":["t:0","t:1","t:2"],"ndarray":[[0.0,1.0,0.0]]},"meta":{"requestPath":{"model-test-predictor":"202949997891.dkr.ecr.ap-northeast-2.amazonaws.com/common/build:mlv2"}}}

curl -X POST 'https://model-test.bys.asia/api/v1.0/predictions' --header 'Content-Type: application/json' --data-raw '{ "data": { "ndarray": [[10,0]] }}'
{"data":{"names":["t:0","t:1","t:2"],"ndarray":[[0.0,0.0,1.0]]},"meta":{"requestPath":{"predictor":"202949997891.dkr.ecr.ap-northeast-2.amazonaws.com/common/build:mlv2"}}}

curl -X POST 'https://model-test.bys.asia/api/v1.0/predictions' --header 'Content-Type: application/json' --data-raw '{ "data": { "ndarray": [[15,4]] }}'
{"data":{"names":["t:0","t:1","t:2"],"ndarray":[[0.0,0.0,1.0]]},"meta":{"requestPath":{"predictor":"202949997891.dkr.ecr.ap-northeast-2.amazonaws.com/common/build:mlv2"}}}
X = np.array([
  [1, 1],
  [1, 2],
  [1, 3],
  [1, 4],
  [2, 1],
  [2, 2],
  [2, 3],
  [2, 4],
  [3, 1],
  [3, 2],
  [3, 3],
  [3, 4],
  [4, 1],
  [4, 2],
  [4, 3],
  [4, 4],
  [10,1],
  [10,15]
])
y = np.array([0, 0, 1, 1, 0, 0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3])

curl -X POST 'https://model-test.bys.asia/api/v1.0/predictions' --header 'Content-Type: application/json' --data-raw '{ "data": { "ndarray": [[6,0]] }}'
{"data":{"names":["t:0","t:1","t:2","t:3"],"ndarray":[[0.0,0.0,1.0,0.0]]},"meta":{"requestPath":{"predictor":"202949997891.dkr.ecr.ap-northeast-2.amazonaws.com/common/build:mlv3"}}}

curl -X POST 'https://model-test.bys.asia/api/v1.0/predictions' --header 'Content-Type: application/json' --data-raw '{ "data": { "ndarray": [[10,0]] }}'
{"data":{"names":["t:0","t:1","t:2","t:3"],"ndarray":[[0.0,0.0,0.0,1.0]]},"meta":{"requestPath":{"predictor":"202949997891.dkr.ecr.ap-northeast-2.amazonaws.com/common/build:mlv3"}}}

curl -X POST 'https://model-test.bys.asia/api/v1.0/predictions' --header 'Content-Type: application/json' --data-raw '{ "data": { "ndarray": [[15,4]] }}'
{"data":{"names":["t:0","t:1","t:2","t:3"],"ndarray":[[0.0,0.0,0.0,1.0]]},"meta":{"requestPath":{"predictor":"202949997891.dkr.ecr.ap-northeast-2.amazonaws.com/common/build:mlv3"}}}

분석

 - X: 16개의 데이터 포인트, 각각 2개의 특성을 가짐
 - y: 각 데이터 포인트의 클래스 레이블 (0, 1, 2 중 하나)

이 모델은 다음과 같은 패턴을 학습하게 된다.  
    첫 번째 특성이 1 또는 2인 경우:
        대체로 클래스 0과 1로 분류됨
        두 번째 특성이 1-2면 클래스 0, 3-4면 클래스 1인 패턴이 보임

    첫 번째 특성이 3 또는 4인 경우:
        모두 클래스 2로 분류됨

model v3 에서는 (10,1), (10, 15) 에 대한 데이터 클래스를 3으로 추가 제공하였고, 추론결과 (15,4)와 같은 데이터는 t4 클래스로 분류되는 것을 알 수 있다. 

Tag: [ mlops  ]